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A bit of history (of Modena also)
Consider classical kinetic (or Fokker-Planck) equations

(∂t + v · ∇x )︸ ︷︷ ︸
transport

f = ∇v · (A∇v f )︸ ︷︷ ︸
diffusion

+ B · ∇v f + h︸ ︷︷ ︸
source

(t, x , v)︸ ︷︷ ︸
times,space,velocity

∈ R × Rn × Rn

under natural ellipticity conditions on the coefficients and scalar field
0 < λIn ≤ A ≤ ΛIn

|B| ≤ Λ
h essentially bounded

In this scenarion, classical first Hölder regularity in the spirit of the works of De
Giorgi-Nash & Moser (DGNM in short) theroy is completed

Pascucci & Polidoro, CCM (2004): L∞-L2 estimates via Moser’s Iteration.
Golse, Imbert, Mouhot & Vasseur, Ann. SNS (2019): Hölder regularity +
Harnack inequality
Guerand & Mouhot, JEP (2021): Weak Harnack inequality.
Anceschi & Rebucci, JDE (2022): Weak regularity for kinetic equations
with more than one spatial commutator.
Anceschi et. al, Preprint (2024): Poincaré inequality based on local
trajectories and weak Harnack
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What’s happen is the diffusion is nonlocal??

We investigate local properties of solutions f ≡ f (t, x , v) to a wide class of
integro-differential equations having as toy model

(∂t + v · ∇x )f + (−△v )s f = 0, (t, x , v) ∈ R × Rn × Rn

Here we denote with (−△v )s the fractional Laplacian acting only the velocity
variables

(−△v )s f (t, x , v) = p. v .
ˆ
Rn

f (t, x , v) − f (t, x ,w)
|v − w |n+2s dw s ∈ (0, 1).

What are we looking for?
We want to prove classical results in the spirit of the DGNM theory for elliptic
and parabolic equations.
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Why are we interested in nonlocal kinetic equations?
Consider the Boltzmann equation

(∂t + v · ∇x )f = Q(f , f ).

Under special circumstances the nonlinear and nonlocal collision operator Q(·)
can be “linearized” as follows

Q(f , f ) ≈ LKf f + ⟨lower order terms⟩

where

LKf f (t, x , v) := p. v .
ˆ
Rn

(
f (t, x ,w) − f (t, x , v)

)
Kf (t, x , v ,w) dw

with the measurable kernel depending on the solution f itself.

Question:
Is it possible to apply ideas from the area of integro-differential equations in the
context of the Boltzmann equation.

There are several difficulties that we must overcome:
In what way is the kernel Kf elliptic?
Is it possible to extend the regularity results for integro-differential
parabolic equations to the setting of the Boltzmann equations?
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Solution class

Conditional regime
There are mo, Mo, Eo, Ho > 0 such that for all (t, x) it holds:

mo ≤
´
Rn f (t, x , v) dv ≤ Mo´

Rn f (t, x , v)|v |2 dv ≤ Eo´
Rn f (t, x , v) log f (t, x , v) dv ≤ Ho

(H)

Under the bounds (H) the operator LKf satisfies:

(H) =⇒


Coercivity: ∥f ∥2

H̊s ≲ −
´
Rn LKf f (v)f (v) dv + ∥f ∥2

L2

Non-degeneracy assumption when 0 < s < 1/2
Weak upper bounds

´
Rn\Br (v) Kf (v ,w ′) dw ≲ r−2s

Cancellation conditions

Remark
The ellipticity constants of Kf depends on the bounds on the quantities in (H)
and on ∥f ∥L∞ .
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De Giorgi methods for the Boltzmann equation

Theorem (Imbert & Silvestre, JEMS (2020))
There exists universal constants Ro ∈ (0, 1), R1 > 1 and ζ ∈ (0, 1) such that
if f is a nonnegative weak supersolutions to

(∂t + v · ∇x )f = LKf f + h in (−1, 0] × BR1+2s
1

× BR1

then
∥f ∥Lζ (Q−) ≲ inf

Q+
f + ∥h∥L∞ ,

with

Q+ := (−R2s
o , 0] × BR1+2s

o
× Br

and Q− := (−1,−1 + Ro
2s ] × BRo1+2s × BRo

The weak Harnack inequality is enough to dervie Hölder regularity for
solutions:

∥f ∥Cα((−1/2,0)×B1/2×B1/2) ≲ ∥f ∥L∞((−1,0]×B1×Rn) + ∥h∥L∞((−1,0]×B1×B1)

Both the full Harnack inequality and a linear L∞-L2 do not hold for
nonlocal equations as the one modeling the Boltzmann equation.

Mirco Piccinini Kinetic integral equations 6



Nonlocal Fokker-Planck equations
Consider a “better” equation

(∂t + v · ∇x )f = LK f + h (1)
with the measurable kernel K : R1+3n → [0,+∞] satisfying{

K(t, x , v ,w) = K(t, x ,w , v) ,
K(t, x , v ,w) ≈ |v − w |−n−2s .

Stokols, SIMA (2019): Hölder regularity for essentially bounded solutions
Loher, JFA (2024): “Not-so-Strong” Harnack for essentially bounded
solutions

sup
Q−

f ≲
(

inf
Q+

f
)β

β ∈ (0, 1)

Anceschi et al. arXiv (2024): weak Harnack inequality via Poincaré
inequality.

Remark
The classical full Harnack inequality is absent in all of these previous works

Motivation:
Develop the nonlocal theory of Kolmogorov equations completing the key
missing results (full Harnack inequality and L∞-L2 estimate).
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Geometric setting

Remark
The transport and diffusion defines a geometric structure which leaves them
invariant and preserves their homogeneity.

Endow R1+2n with the following Galilean transformation and scalings{
zo ◦ z := (t + to, x + xo + tvo, v + vo)
DR(z) := (R2st, R1+2sx , Rv) ∀R > 0

We introduce a family of domains respecting the invariant transformations
defined above. Given

Q1 ≡ Q1(0) := U1(0, 0) × B1(0) = (−1, 0] × B1(0) × B1(0) .

define the slanted cylinder QR(zo) by

QR(zo) := {zo ◦ DR(z) : z ∈ Q1}

≡
{

(t, x , v) : to − R2s < t ≤ to,

|x − xo − (t − to)vo| < R1+2s , |v − vo| < R
}
.
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Functional setting
For s ∈ (0, 1) we denote with W s,2(A) the classical fractional Sobolev space

W s,2(A) :=
{

f ∈ L2(A) : [f ]s,2;A < +∞
}
,

where

[f ]s,2;A :=
(ˆ

A

ˆ
A

|f (v) − f (w)|2

|v − w |n+2s dv dw
)1/2

,

equipped with the usual norm

∥f ∥W s,2(A) := ∥f ∥L2(A) + [f ]s,2;A .

Definition (Di Castro, Kuusi & Palatucci, JFA (2014) + Ann. IHP-C (2016))

Let f be a measurable function on (t1, t2) × Ωx × Rn ⊂ R1+2n, then the
nonlocal tail of f centered in vo and of radius r is defined by

Tail(f ; vo,R) := R2s
ˆ
Rn\BR (vo)

|f (v)||vo − v |−n−2s dv .

In connections with the nonlocal tail consider the related tail space

L1
2s(Rn) :=

{
f ∈ L1

loc(Rn) :
ˆ
Rn

|f (v)|
(1 + |v |)n+2s dv < ∞

}
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Weak formulation
Given Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n denote by

W :=
{

f ∈ L2
loc((t1, t2) × Ωx ; W s,2

loc (Ωv )) ∩ L1
loc((t1, t2) × Ωx ; L1

2s(Rn))

: (∂t + v · ∇x )f ∈ L2
loc((t1, t2) × Ωx ; W −s,2(Rn))

}
.

and by EK (·) the nonlocal energy

EK (f , ϕ) :=
¨

Rn×Rn

(
f (v) − f (w)

)(
ϕ(v) − ϕ(w)

)
K(v ,w) dv dw .

Definition
A function f ∈ W is a weak subsolution ( resp., supersolution) to (1) in Ω if
ˆ t2

t1

ˆ
Ωx

EK (f , ϕ) dx dt +
ˆ

Ω
(∂t f + v · ∇x f )ϕ dz

(≥ resp.)
≤

ˆ
Ω

h ϕ dz

for any nonnegative ϕ ∈ L2
loc((t1, t2) × Ωx ; W s,2(Rn)) such that ϕ(t, x , ·) is

compactly supported in Ωv . A function f ∈ W is a weak solution if it is both a
weak sub- and supersolution.
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A roadmap to get the full Harnack
Consider

(−△v )s f = 0 in B2R(0) ⊂ Rn. (2)
To get the full Harnack inequality for solutions f ≥ 0 to (2) it sufficies to
combine that subsolutions satisfies

sup
BR/2(0)

f+ ≤ c(δ)∥f+∥L2(BR (0)) + δTail(f+; 0,R/2) ∀δ ∈ (0, 1] ,

whereas nonnegative supersolutions satifies
Tail(f+, 0,R) ≤ c sup

B3R/2(0)
f .

By a covering argument and choosing δ > 0 small enough it is possible to
reabsorb the tail term and to prove the full Harnack inequality after
combination with the weak one

−
ˆ

BR (0)
f (v) dv ≤ c inf

BR/2(0)
f

Di Castro, Kuusi & Palatucci, JFA (2014)
Cozzi, JFA (2017) (via De Giorgi classes).

Similarly happens for parabolic-type problems
Strömqvist Ann. IHP-C (2019) (for global solutions)
Kassmann & Weidner, Anal. PDE (2024) + Duke (2024)
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Counterexample to the strong Harnack inequality

Theorem (Kassmann & Weidner, Adv. Math. (2024))

There exist a constant co > 0 such that for every ε ∈ (0, 1
4 ) there exists a

solution fε : R2n 7→ [0, 1] to

v · ∇x fε + (−△v )s fε = 0 for (x , v) ∈ B1(0) × B1(0) ,

such that for ξ := ( 1
2 en, 0) ∈ R2n, it holds

fε(ξ) ≤ coε
n(1+2s)−2s fε(0).

In particular, fε(0)/fε(ξ) → ∞ as ε → 0.

It is an effect purely originating from the combination of the nonlocality of
the diffusion combined with the anisotropy of the transport.
It is very surprising when compared to all the previous literature dealing
with local kinetic equations
No obstruction to regularity
The classical L∞-L2-estimate fails in general. Moreover, the L∞-L2

estimate remains false if an Lp-norm of the tail is added on the right-hand
side if p < n(1+2s)

2s .
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L∞-L2 estimate reloaded

Theorem (Anceschi, Palatucci & Pic., preprint (2025))

Let Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n be a domain and s ∈ (0, 1). Assume
that f ∈ W is a weak subsolution to

(∂t + v · ∇x )f = LK f + h in Ω.

Then, there exists p∗ ≡ p∗(n, s) > 2 such that if, for some p > p∗, it holds
Tail(f+; B) ∈ Lp

loc((t1, t2) × Ωx ), for all B ⋐ Ωv , and h ∈ Lp
loc(Ω), then, for

any Qr (zo) ⋐ Ω and any δ ∈ (0, 1], it holds

sup
Q r

2
(zo)

f ≤ c
(

⟨vo⟩
δr n+3s

)β

∥f+∥L2(Qr (zo)) + ∥h∥Lp(Qr (zo)) (3)

+δ∥ Tail(f+; Br/2(vo))∥Lp(Ur (to,xo)) ,

where β ≡ β(n, s, p) > 0 and c ≡ c(n, s,Λ, p) > 0. Moreover, β, c ↗ ∞
as p ↘ p∗.

We want to built a De Giorgi-type argument for proving the supremum
estimate.
The procedure is based on a combination of a Sobolev inequality and an
energy estimate.
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How do we gain integrability?

Remark
Because of the strong degeneracy of the involved equations we can not rely on
embedding theorems given by the function space W itself.

We rely on the fundamental solutions of the fractional Kolmogorov
equation to transfer regularity in all the variables

Proposition
For any σ > 0, let g be a weak solution of{

(∂t + v · ∇x )g + (−△v )sg ≤ (−△v )s/2h1 + h2 in [−σ2s , 0] × R2n,

g(−σ2s , x , v) = go(x , v) in R2n.

Assume h1, h2 ∈ L2([−σ2s , 0] × R2n). Then

∥g∥Lq([−σ2s ,0]×R2n) ≲ ∥go∥L2(R2n) + ∥h1∥L2([−σ2s ,0]×R2n) + ∥h2∥L2([−σ2s ,0]×R2n)

for any 2 ≤ q ≤ 2 + 2s
n(1+s) .
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Proof of the gain integrability
Assume zo = 0. Fix 0 < ϱ < r < 1, and define σ := ϱ+ (r − ϱ)2−3 and

ψ = ψ(x , v) ∈ C∞
c (B((ϱ+σ)/2)1+2s × B(ϱ+σ)/2)

ψ ≡ 1 on Bϱ1+2s × Bϱ and 0 ≤ ψ ≤ 1 ,
|∇vψ| ≤ c/(r − ϱ) and |(v + vo) · ∇xψ| ≤ c⟨vo⟩/(r − ϱ)1+2s

Then, the function g := (f − κ)+ψ satisfies

(∂t + v · ∇x )g + (−△v )sg
≤ (−△v )sg + (f − κ)+

(
v · ∇xψ

)
+ ψχ{f >κ}h + LK g

+

(
p. v.
ˆ
Rn

(f − κ)+(w)
(
ψ(w) − ψ(v)

)
|v − w |n+2s dw

)
χ{f >κ}

=: (−△v )s/2h1 + h2.

Remark
Observe that the right-hand side involves fractional differentiation with respect
to the v-variable only, and these are the directions where we got some
regularity estimates from energy estimates.
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Proof of the gain integrability

Estimating the right-hand side depending on long and short interactions as well
as on the ranges of fractional index s ∈ (0, 1), we get

∥h1∥2
L2([−σ2s ,0]×R2n) + ∥h2∥2

L2([−σ2s ,0]×R2n)

≤ c⟨vo⟩2

(r − ϱ)2(n+3s) ∥(f − κ)+∥2
L2(Qr ) + c

(r − ϱ)2

ˆ
Ur

[(f − κ)+]2s,2,Bσ
dx dt

+ c |Qr ∩ {f > κ}|1− 2
p

(r − ϱ)2(n+2s) ∥Tail((f − κ)+; Br )∥
2
p
Lp(Ur )

+ c |Qr ∩ {f > κ}|1− 2
p ∥h∥

2
p
Lp(Qr ) ,

The proof finishes combining the above ones with classical energy estimates

sup
t∈[−T ,0]

∥g(t, ·, ·)∥2
L2

x,v
+
ˆ 0

−T
∥g(t, ·, ·)∥2

L2
x Hs

v
dt ≲ ∥g∥2

L2 + ⟨nonlocal tail terms⟩
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Local gain of integrability

Theorem (Anceschi, Palatucci & Pic., preprint (2025))

Let Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n be a domain and s ∈ (0, 1). Assume
that f ∈ W is a weak subsolution. Then,

f ∈ Lq
loc(Ω) ∀ q ∈

[
2, 2 + 2s

n(1 + s)

]
.

Furthermore, for any p > 2 such that Tail(f+; B) ∈ Lp
loc((t1, t2) × Ωx ), for

any B ⋐ Ωv and h ∈ Lp
loc(Ω), and any Qr ⋐ Ω, the following estimate does

hold, for 0 < ϱ < r ,

∥(f − κ)+∥Lq(Qϱ)

≤ c ⟨vo⟩
(r − ϱ)2(n+3s) ∥(f − κ)+∥L2(Qr ) + c |Qr ∩ {f > κ}|

1
2 − 1

p

r − ϱ
∥h∥Lp(Qr )

+ c |Qr ∩ {f > κ}|
1
2 − 1

p

(r − ϱ)2(n+2s) ∥Tail((f − κ)+; Br )∥Lp(Ur ) ,

for any κ ∈ R.
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De Giorgi iteration and the supremum estimate
We built a nonlinear recursive argument. For j ∈ N define

Rj := 1
2

(
1 + 1

2j

)
R and κj :=

(
1 − 1

2j

)
κo for R, κo > 0

and
Yj := κ−2

o

ˆ
QRj

(f − κj)2
+ dz

Applying the local gain of integrability we thus arrive at
Yj+2 ≲ δ−1bjY 1+α

j with b > 1 ,
where {

δ ∈ (0, 1] (arbitrary)
α := 1 − 2

p − 2
q for p > 2, q ∈

(
2, 2 + 2s

n(1+s)

]
,

Choosing{
p > 2 + 2n(1+s)

s

κo ≈
( ⟨vo⟩

δrn+3s

) 1
α ∥f+∥L2(Qr ) + ∥h∥Lp(Qr ) + δ ∥ Tail(f+; Br/2)∥Lp(Ur ) , ,

we obtain that
α > 0 and Yo ≲ b− 2

α2

so that a classical iteration argument yields that Yj → 0 as j → ∞, giving the
desired result.
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The strong Harnack inequality

Theorem (Anceschi, Palatucci & Pic., preprint (2025))

Let Ω := (t1, t2) × Ωx × Ωv ⊂ R1+2n be a domain, Q2(0) ⋐ Ω, and s ∈ (0, 1).
Assume that f ∈ W is a globally nonnegative weak solution to

(∂t + v · ∇x )f = LK f + h in Ω.

Then, there exists p∗ ≡ p∗(n, s) > 2 such that if, for some p > p∗, it holds
Tail(f+; B) ∈ Lp

loc((t1, t2) × Ωx ), for all B ⋐ Ωv , then there exists Ro ∈ (0, 1)
depending only on n and s such that

sup
Q−

f ≲ inf
Q+

f + ∥ Tail(f ; 0,Ro/2)∥Lp(URo (−1+R2s
o ,0)) ,

where

Q+ := (−R2s
o , 0] × BR1+2s

o
× BRo

and Q− := (−1,−1 + Ro
2s ] × BRo1+2s × BRo
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Proof of the strong Harnack inequality

We combine the weak Harnack inequality with the following covering Lemma

Lemma
There exist constants c∗ ≡ c∗(s) ∈ (0, 1) and γ ≡ γ(s) ≥ 1 such that, for
any 1/2 ≤ ϱ < r ≤ 1 and any zo ∈ R1+2n, it holds

Qc∗(r−ϱ)γ (z) ⊂ Qr (zo) ∀z ∈ Qϱ(zo) ,

For 1/2 ≤ σ′ < σ ≤ 1, by the L∞-L2 estimate we have, for γ1, γ2 > 0
(universal)

sup
Qσ′Ro (−1+R2s

o ,0,0)
f ≤

c(δ)∥f ∥Lζ (Q−
Ro

)

[(σ − σ′)Ro]γ1
+
(

cδ + 2 − ζ

2

)
sup

QσRo (−1+R2s
o ,0,0)

f

+ c(δ)
[(σ − σ′)Ro]γ2

∥ Tail(f+; 0,Ro/2)∥Lp(URo (−1+R2s
o ,0))

Choosing δ ∈ (0, 1) sufficiently small, we reabsorb the supremum on the
left-hand side and conclude with the weak Harnack inequality.
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Closing remarks

Our Harnack formulation does not contradict the counterexample built via
the sequence {fε} since

sup fε

inf fε + ∥ Tail(fε)∥Lp
< ∞ as ε ↘ 0 .

The lower bound of the exponent p is given by the highest integrability
range achievable via convolution with the fundamental solution.

Weak solutions are not required to have finite p-tail. However, in
accordance with the Boltzmann case, boundedness on the mass trivially
implies finite p-tail, as, e. g.

Silvestre CMP (2016): Theorem 1.1 – 1-2
Imbert, Mouhot & Silvestre, JEP (2020): Formula (1.3)
Imbert & Silvestre JEMS (2020: Section 1.3
Imbert & Silvestre, JAMS (2022): Assumption 1.2
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THANK YOU

Mirco Piccinini Kinetic integral equations 22


